
Impact case study (REF3)

Page 1

Institution: University of Edinburgh

Unit of Assessment: 11

Title of case study: Effect handlers for increased reach, effectiveness, and future-proofing
in software products and services

Period when the underpinning research was undertaken: 2009 – 2019

Details of staff conducting the underpinning research from the submitting unit:

Name(s):

Gordon Plotkin
Samuel Lindley

Nicolas Oury
Ohad Kammar

Role(s) (e.g. job title):

Professor
Research Fellow
Senior Research Fellow
Research Fellow
Senior Research Fellow

Period(s) employed by
submitting HEI:
1971 – present
2010 – 2012
2013 – 2019
2009 – 2012
2019 – present

Period when the claimed impact occurred: 2014 – 2020

Is this case study continued from a case study submitted in 2014? No

1. Summary of the impact
Researchers at the University of Edinburgh (UoE) invented the Effect Handler programming

construct, and proved it to be a versatile, highly expressive programming abstraction.

Companies worldwide have adopted Effect Handlers for software infrastructure, including

GitHub, Uber and Facebook. Across these companies, Effect Handlers have brought

commercial benefits ranging from improved developer productivity, in turn yielding more

cost-effective working practices (for GitHub and Uber); to increased product performance

(for Uber and Facebook). Effect Handlers have been strategically important for the three

companies, and ultimately benefit a diverse population of billions of end-users, from

developers collaborating on GitHub, to commercial and private users of Facebook’s

underpinning software architecture, React.

2. Underpinning research
Programming language researchers investigate new programming constructs, through

programming language modelling, design, and implementation. Desirable properties of

such constructs include the ability to make modular abstractions, allowing software

development teams to scale and achieve larger goals; expressivity, enabling software to

evolve alongside developer needs; and runtime efficiency, allowing software systems to

scale to larger tasks and throughput. Over the last decade, researchers in the University of

Edinburgh’s (UoE) Laboratory for the Foundations of Computer Science’s (LFCS)

programming language group invented and implemented a modular control-flow

programming construct, the Effect Handler. In 2009, Professor Gordon Plotkin and his PhD

student Dr Matija Pretnar presented an algebraic treatment of exception handlers, and

introduced handlers for other computational effects representable by an algebraic theory

[3.1]. In this formalism, programmers can define effects and invoke them to interrupt the

program’s execution and invoke an appropriate handler code. However, unlike exception

handlers, an Effect Handler can resume the original point of execution, sometimes

repeatedly. Effect Handlers promise a highly modular and expressive programming style,

and Plotkin and Pretnar gave a theoretical demonstration of their versatility [3.1].

Subsequently, Dr Sam Lindley, Dr Nicolas Oury, and Dr Ohad Kammar (then a UoE PhD

student) popularised Effect Handlers by giving simpler descriptions for them and

demonstrating how to incorporate them into existing programming languages [3.2]. Effect

Handlers were originally presented by Plotkin and Pretnar in a style that required

considerable mathematical sophistication to understand, namely categorical algebra and

denotational semantics. The researchers gave an operational description using a high-level

Impact case study (REF3)

Page 2

state machine. They also implemented Effect Handlers in existing programming languages

(Haskell, SML, OCaml, Lisp, Racket), giving programmers and programming language

researchers a hands-on opportunity to learn about and experiment with them.

Lindley and Kammar explored the expressive power of Effect Handlers, and proved they

are highly expressive [3.4]. These theoretical results make Effect Handlers a future-proof

programming abstraction. Moreover, this theoretical development incorporates several

source-to-source translations that form the basis for the more practical work, including

Lindley’s continuation passing style translations, which offer a practical implementation

technique of effect handlers that does not require special support in a target language’s

runtime [3.3].

Lindley and his PhD student Daniel Hillerström showed how to implement Effect Handlers

efficiently in web applications [3.3]. This technique formed the basis for the programming

language OCaml’s run-time for Effect Handlers, which Hillerström continued in a research

internship at OCaml Labs Cambridge during his PhD. Lindley continued to develop

implementation techniques and type systems for Effect Handlers with PhD students

Hillerström [3.5] and Dr Craig McLaughlin [3.6].

Plotkin, Lindley and Kammar led and grew the Effect Handlers research community and its

ties with industry by participating and co-organising international research meetings such as

Dagstuhl (#16112 and #18172) and Shonan (#146), attended by academic and industrial

researchers.

3. References to the research
3.1. Plotkin, G., & Pretnar, M. (2009). Handlers of Algebraic Effects. In Castagna G. (eds)

Programming Languages and Systems. ESOP 2009 (pp. 80-94). (Lecture Notes in
Computer Science, vol 5502). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-
3-642-00590-9_7 (188 citations)

3.2. Kammar, O., Lindley, S., & Oury, N. (2013). Handlers in action. In Proceedings of the
18th ACM SIGPLAN international conference on Functional programming (ICFP '13).
(pp. 145-158). Association for Computing Machinery, New York, NY, USA, 145–158.
https://doi.org/10.1145/2500365.2500590 (based on research conducted at UoE in
2012; 143 citations)

3.3. Hillerström, D., Lindley, S., Atkey, R., & Sivaramakrishnan, KC. (2017). Continuation
passing style for effect handlers. In Miller D. (ed.) Proceedings of the 2nd International
Conference on Formal Structures for Computation and Deduction. FSCD 2017 (pp.
18:1-18:19). (Leibniz International Proceedings in Informatics (LIPIcs), vol 84). Schloss
Dagstuhl—Leibniz-Zentrum fuer Informatik. Dagstuhl, Germany.
https://doi.org/10.4230/LIPIcs.FSCD.2017.18 (32 citations)

3.4. Foster, Y., Kammar, O., Lindley, S., & Pretnar, M. (2017). On the expressive power of
user-defined effects: effect handlers, monadic reflection, delimited control. In
Proceedings of the ACM on Programming Languages (PACMPL), 1(ICFP), 13:1-13:29.
[13]. https://doi.org/10.1145/3110257 (42 citations)

3.5. Hillerström, D., & Lindley, S. (2016). In Proceedings of the 1st International Workshop
on Type-Driven Development (TyDe 2016). Association for Computing Machinery, New
York, NY, USA, (pp. 15–27). https://doi.org/10.1145/2976022.2976033 (70 citations)

3.6. Lindley, S., McBride, C., & McLaughlin, C. (2017). Do be do be do. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL
2017) (pp. 500-514). Association for Computing Machinery, New York, NY, USA,
https://doi.org/10.1145/3009837.3009897 (POPL 2017 acceptance rate 20%)

Citation data from Google Scholar, 2020-12-17.

https://doi.org/10.4230/LIPIcs.FSCD.2017.18
https://doi.org/10.1145/3110257
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1145/3009837.3009897

Impact case study (REF3)

Page 3

Key research grants
EPSRC: From Data Types to Session Types (EP/K034413/1, GBP4,945,110)

4. Details of the impact

The Effect Handlers abstraction has been adopted for software infrastructure by companies

worldwide, contributing to their business strategy, enabling increased productivity, and

leading to resource-use efficiency improvements. Three notable companies – GitHub, Uber

and Facebook – used Effect Handlers to benefit an exceptionally large number of users.

GitHub, Inc. hosts the largest collection of programming language source code repositories

in the world. The company’s Semantic team develop code intelligence tools for semantic

analysis, like semantic code navigation. Central to the code intelligence tools is an Effect

Handler library that the GitHub team developed, underpinned by the core abstractions first

developed by UoE (3.1, 3.2) [5.1, para. 2].

Semantic’s Effect Handlers operate at scale, analysing thousands of pull-requests per day,

continuously [5.1, para 1]. Effect Handlers enable Semantic’s analysis tools to support

multiple programming languages, giving these tools extraordinary reach. Semantic’s tools

cover over 56% of the thousands of pull requests per day in these languages, across

100,000,000 repositories [5.1, paras. 1, 4]. This wide reach is only possible through

supporting a diverse collection of languages, since each language covers under 25% of the

total repositories on GitHub [5.1, para. 1]. Moreover, the support enabled by Effect

Handlers is unusually cost-effective: the Semantic team confirm they can “offer [their] users

a service that would otherwise be prohibitively expensive [...keeping] development and

maintenance costs remarkably low”, with only 8 developers on the team. Effect Handlers

also give GitHub a strategic advantage, as they confirm that “a future-proof Effect Handlers

library contributes to GitHub’s long-term strategy for offering code intelligence products ‘out

of the box’” [5.1, paras. 4-5].

Effect Handlers are central to these benefits. Analysing a language involves controlling a

combinatorial explosion of thousands of subtle inter-related parameters. The company

confirms:

Without a modular abstraction like Effect Handlers, we would likely need a

dedicated team for each combination of language and analysis parameters,

rendering the endeavour too costly. [5.1, para. 4]

With Effect Handlers, a small development suffices. The strategic advantage, future-

proofing the product, is one of the Effect Handler library’s design goals, “making it easy to

add new languages as well as new analyses in order to support more advanced language

features.” [5.1, para. 4]

Uber Technologies, Inc. provides a diverse number of services from vehicles for hire to food

and package delivery. It operates the largest ride-hailing platform in the world. Uber faces

many machine-learning problems, involving large amounts of data. In 2017, grounded in

their desire to advance the state of the art in machine intelligence, Uber released the Pyro

open-source programming language embodying how they “believe statistical modelling

should be done” [5.2, para. 2].

Impact case study (REF3)

Page 4

Uber used Pyro to debug, prototype and automate statistical modelling pipelines, freeing

staff from having to constantly monitor and maintain these systems manually, avoiding

wastage of dollars [5.2, para. 6]. The production system requires very little oversight,

enabling teams to focus on higher level strategy and execution instead of repetitive

monitoring tasks. Uber credits Effect Handlers with enabling these benefits from Pyro. They

note that implementing a system like Pyro without Effect Handlers would have been

impractical due to code duplication, resulting in many bugs [5.2, para. 5]. Effect Handlers

allow modellers to change inference algorithms with low effort, without changes to the

model. For example, Pyro’s conjugate marginalisation Effect Handler “led to a 10x faster

performance than comparable models in Stan – the other principal industrial standard

probabilistic programming language” [5.2, para. 7]. Pyro’s reference manual [5.3, final page]

refers readers directly to University of Edinburgh’s underpinning research (3.1, 3.2). This

library lets users “answer complex questions with minimal additional code.” [5.2, para. 5]

The modularity of Pyro, achieved through Effect Handlers, future-proofs these statistical

pipelines, which is “an important strategic consideration” for Uber [5.2, para. 7].

One concrete success story at Uber is a Pyro model deployed at scale in advertising

budget allocation, running automatically, continually, and daily. This marketing problem is

strategically important for Uber due to marketing’s direct contribution to the vitality of their

ride hailing platform and the company’s global volume of operation: Uber works in

approximately 10,000 cities across 69 countries [5.2, paras. 2 and 8]. The company’s total

marketing and sales budget in 2019 was USD4,600,000,000 (09-2020), a

USD1,500,000,000 (09-2020) increase from 2018. Even a 1% increase in return on

advertising spend translates into millions of US dollars per annum [5.2, para. 8]. Uber

confirms:

Pyro has more than delivered on its promise of making probabilistic modelling and

inference easier, and these models have been used by the marketing team to

manage important campaigns. [5.2, para. 8]

Facebook, Inc. forms the largest social media conglomerate corporation in the world,

developing and maintaining multiple social media platforms reaching billions of users. Key

products include the Facebook app (more than 2,000,000,000 users), Messenger, and

Instagram (more than 1,000,000,000 users, each). The user-interface in these platforms is

based on the Facebook’s React JavaScript library [5.4, para. 1].

React used Effect Handlers in the design of its API, in the form of two new programming

concepts: Hooks and Suspense. Both make user-interface code simpler and cheaper to

develop and extend, and the user interface more reactive. Facebook has made using

Hooks mandatory across its codebase, including its influential Messenger and Instagram

platforms, and most notably in the website design for the Facebook platform [5.4, paras. 6-

8]. Moreover, React is a popular library outside Facebook, with 2,000,000 active developers

worldwide [5.4, para. 1]. It is widely adopted across diverse business sectors by companies

such as Twitter, Airbnb, Uber, Dropbox, Microsoft Office, online education platforms Khan

Academy and Codecademy, and news outlets such as the New York Times and the BBC

[5.4, para. 2]. A recent survey conducted in the React community showed that 70% of

respondents prefer to use Hooks, and only 7% prefer not to use them, and that 50% use

Hooks in production [5.4, para. 9]. Hooks have been adopted as the new industry-standard

Impact case study (REF3)

Page 5

for web user-interface design, with all competing frameworks directly referencing Hooks as

a feature they want to support [5.5-5.8].

The React team relies on the expressivity and compositionality of Effect Handlers to future-

proof their API design, describing the UoE programming construct as “strategically

important” [5.4, penultimate para.]. They credit Effect Handlers with enabling improvements

to React’s compositionality, and also state:

Effect Handlers are an expressive concept based on rigorous mathematical models.

These properties give us further assurance that they will continue to deliver flexible

designs and utilise resources efficiently as our needs develop, allowing us to make

more informed strategic decisions today. [5.4, penultimate para.]

React developers attribute these benefits directly to the UoE research, citing Effect

Handlers as a “key concept inspiring the current design of the React API” [5.4, final para.].

Their documentation references Multicore OCaml’s algebraic effects [5.9, final para.], an

implementation of Effect Handlers derived from UoE’s underpinning research (3.1-3.3).

Facebook concludes:

The React ecosystem — the largest on the web — has widely embraced this Effect-

Handler-based design, and it is used in production code in an essential way. [5.4,

final para.]

Overall, Effect Handlers underpin technologies used by companies across the software

industry, reaching billions of users and clients daily. The programming construct developed

at UoE has improved production efficiency, and empowered teams to develop clean,

flexible, and expressive code. Effect Handlers has enabled companies to provide future-

proof products and services, and drives strategic decision-making.

5. Sources to corroborate the impact
5.1. Letter of corroboration from the Senior Engineer Manager of Semantic, GitHub, Inc.
5.2. Letter of corroboration from a Senior Engineer Manager, formerly at Uber AI and a

core member/maintainer of the Pyro project.
5.3. Uber Technologies, Inc. (2018). Poutine: A Guide to Programming with Effect

Handlers in Pyro. Retrieved December 7, 2020, from
http://pyro.ai/examples/effect_handlers.html

5.4. Letter of corroboration from the React team, Facebook, Inc.
5.5. Vuejs. (2020, November 17). Vuejs/rfcs: Introducing the Composition API. Retrieved

February 9, 2021, from https://github.com/vuejs/rfcs/blob/master/active-rfcs/0013-
composition-api.md

5.6. Harris, R. (2019, February 06). 100% true. When hooks were first announced, it
forced me to acknowledge the flaws in the original design for Svelte components…
Rising tide lifts all boats! Retrieved January 6, 2021, from
https://twitter.com/rich_harris/status/1093260097558581250?lang=en

5.7. Richardson, L. (2019, July 12). React, Meet Compose. Retrieved January 6, 2021,
from https://speakerdeck.com/lelandrichardson/react-meet-compose?slide=19

5.8. Wadhwa, A. (2020, September 06). Hooks in Flutter. Retrieved January 7, 2021, from
https://medium.com/flutterdevs/flutter-hooks-67b24d47cb36

5.9. Facebook, Inc. (2020). Hooks FAQ. Retrieved January 7, 2021, from
https://reactjs.org/docs/hooks-faq.html#what-is-the-prior-art-for-hooks

http://pyro.ai/examples/effect_handlers.html
https://github.com/vuejs/rfcs/blob/master/active-rfcs/0013-composition-api.md
https://github.com/vuejs/rfcs/blob/master/active-rfcs/0013-composition-api.md
https://twitter.com/rich_harris/status/1093260097558581250?lang=en
https://speakerdeck.com/lelandrichardson/react-meet-compose?slide=19
https://medium.com/flutterdevs/flutter-hooks-67b24d47cb36
https://reactjs.org/docs/hooks-faq.html#what-is-the-prior-art-for-hooks

