
Impact case study (REF3)

Page 1

Institution: University of Edinburgh

Unit of Assessment: 11

Title of case study: The novel testing tool DexFuzz enables a smooth transition to Google's
Android Runtime (ART) and its continuous bug-free development

Period when the underpinning research was undertaken: 2003 – 2018

Details of staff conducting the underpinning research from the submitting unit:

Name(s):

Björn Franke
Hugh Leather
Michael O’Boyle
Tom Spink

Role(s) (e.g. job title):

Reader
Reader
Professor
Senior Researcher

Period(s) employed by
submitting HEI:
2003 – present
2009 – present
1997 – present
2016 – present

Period when the claimed impact occurred: 2014 – 2020

Is this case study continued from a case study submitted in 2014? No

1. Summary of the impact

A research collaboration between the University of Edinburgh and ARM Ltd has resulted in a tool

that utilises novel binary fuzz testing methodologies to scan for bugs in Android’s virtual machine

and enable them to be eradicated before they can cause disruptions in mobile phone apps.

Named DexFuzz, the tool’s development led to Google changing their specifications for the

Android Runtime (ART), the system that underpins the running of each of the 2,500,000,000

Android phones in use worldwide. It has also been adopted as part of the Android Open Source

Project, the development package used by all manufacturers of Android phones, who collectively

make up 85% of the global smartphone market.

2. Underpinning research

Compiler testing is critical to ensuring that developed code is free of errors, and will generate

machine code with exactly the behaviour the user expects from their provided application source

code. Since 2003 Dr Björn Franke and Dr Hugh Leather of the University of Edinburgh (UoE)'s

Compiler and Architecture Design group (CArD) have conducted research into optimising

compiler technology [3.1, 3.3], while developing strong testing methodologies alongside this

work [e.g. in 3.4, 3.5, 3.6]. Their research has resulted in a programme of novel approaches to

compiler testing, exploring a range of techniques.

In 2013, together with PhD students Harry Wagstaff and Tom Spink (staff since 2016), Franke

developed a testing methodology based on instruction set architecture branch coverage analysis

[3.1], capable of generating a set of test cases with a broader coverage than existing

approaches. Shortly after this, Franke and Leather with student Stephen Kyle, developed a

testing methodology for Google’s Android virtual machine, based on a binary fuzzing technique

combined with differential testing [3.2]. This work was carried out with Dave Butcher and Stuart

Monteith from ARM Ltd., who sponsored Kyle's PhD studentship. The compiler fuzzing

methodology was later extended using deep learning, in award-winning research led by Leather

[3.3].

Impact case study (REF3)

Page 2

Firstly, the team used a probabilistic fuzz testing technique to discover coding errors [3.2]. Fuzz

testing involves inputting massive amounts of random data, some of which may trigger faulty

behaviour, thus uncovering a bug in the system. They observed that traditional fuzz testing was

ineffective for compilers operating on binary encoded input languages, e.g. most compiler

intermediate representations (IR). Instead, they extended the previously used naïve binary fuzz

testing approach with domain awareness by providing hints of the encoding structure of binary

encoded IR instructions. This significantly improved the effectiveness of their compiler testing

methodology, as trivially rejected input sequences would be reduced by several orders of

magnitude, leading to more diverse input sequences that can discover compiler bugs

substantially faster. Within 24 hours the team found over 30x more programs that hang (become

stuck) than a generic fuzz testing tool did during the same time period [3.2, Fig. 4].

At the same time as this work (2013-2014), Google had begun to transition their Android virtual

machine from its existing Just-In-Time compiler, Dalvik, to a new and improved Ahead-Of-Time

version, Android Runtime (ART). The UoE team took the opportunity to apply the compiler

fuzzing technique to the virtual machine, with the aim of efficiently detecting and eliminating

errors that would disrupt Google’s transition from Dalvik to ART.

The key idea was to feed structured randomised input sequences to both the old Dalvik and the

new ART compilers simultaneously, and to observe the behaviour of the synthetic code snippets

on both systems side-by-side. Dalvik was the baseline or “golden standard” for reference

implementation, therefore any differences exposed directly pointed to errors in ART. The team

identified around 30 distinct bugs, divided into ART implementation errors and incorrect

specifications.

The culmination of the research was the tool DexFuzz: a novel piece of software which

developers can run to automate the process of ''fuzz testing" of ART [3.2]. DexFuzz has since

proved central to Google’s Android product development, and since the development of Android

5.0 has been applied to identify and eliminate bugs in ART before each new version is released.

It is now shipped with the Google Android Open Source Project (AOSP) - the open-source

repository for the Android source code (https://github.com/aosp/art/tree/master/tools/dexfuzz).

3. References to the research

3.1. Wagstaff, H., Spink, T., & Franke, B. (2014). Automated ISA branch coverage analysis and

test case generation for retargetable instruction set simulators. In Compilers, Architecture
and Synthesis for Embedded Systems (CASES), 2014 International Conference on (pp. 1-
10). Institute of Electrical and Electronics Engineers
(IEEE). https://doi.org/10.1145/2656106.2656113 (11 citations; CASES 2014 acceptance
rate 33%)

3.2. Kyle, S., Leather, H., Franke, B., Butcher, D., & Monteith, S. (2015). Application of Domain-
aware Binary Fuzzing to Aid Android Virtual Machine Testing. In Proceedings of the 11th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (pp.
121-132). New York, NY, USA: ACM.
https://doi.org/10.1145/2731186.2731198 (11 citations)

3.3. Cummins, C., Petoumenos, P., Murray, A., & Leather, H. (2018). Compiler Fuzzing through
Deep Learning. In Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis (pp. 95-105). Amsterdam, Netherlands:
ACM. https://doi.org/10.1145/3213846.3213848 (Received Distinguished Paper award at
ISSTA 2018; 48 citations; ISSTA 2018 acceptance rate 26%)

3.4. Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., O'Boyle, M. F. P., Thomson, J.,
Toussaint, M., & Williams, C. K. I. (2006). Using Machine Learning to Focus Iterative

https://github.com/aosp/art/tree/master/tools/dexfuzz
https://doi.org/10.1145/2656106.2656113
https://doi.org/10.1145/2731186.2731198
https://doi.org/10.1145/3213846.3213848

Impact case study (REF3)

Page 3

Optimization. In Proceedings of the International Symposium on Code Generation and
Optimization (pp. 295-305). (CGO '06). Institute of Electrical and Electronics Engineers
(IEEE). https://doi.org/10.1109/CGO.2006.37 (448 citations; CGO ‘06 acceptance rate
30%)

3.5. Dubach, C., Cavazos, J., Franke, B., Fursin, G., O'Boyle, M., & Temam, O. (2007). Fast
Compiler Optimisation Evaluation Using Code-feature Based Performance Prediction. In CF
'07 Proceedings of the 4th international conference on Computing Frontiers (pp. 131-142).
ACM. https://doi.org/10.1145/1242531.1242553 (98 citations; CF 2007 acceptance rate
37%)

3.6. Leather, H., Bonilla, E., & O'Boyle, M. (2009). Automatic Feature Generation for Machine
Learning Based Optimizing Compilation. In Code Generation and Optimization, 2009. CGO
2009. International Symposium on (pp. 81-91). Institute of Electrical and Electronics
Engineers (IEEE). https://doi.org/10.1109/CGO.2009.21 (Received Test of Time Award at
CGO’19; 148 citations; CGO 2009 acceptance rate 30%)

Citation counts obtained from Google Scholar 2020-12-03.

Key research grants

European Commission: MILEPOST (035307, GBP294,432)

EPSRC: SUMMER (EP/P003915/1, GBP126,284)

4. Details of the impact

The DexFuzz tool has contributed significantly to the improvement of Android, one of Google’s

flagship products that currently powers 2,500,000,000 smartphones worldwide [5.1]. The

research enabled Google to transition smoothly to an upgraded Virtual Machine (from Dalvik to

ART), and has streamlined their bug-fixing engineering processes, once a costly part of

Android’s contribution to Google’s business. It is also now part of Android’s Open Source

project, helping smartphone manufacturers create increasingly innovative devices.

Android generates a considerable portion of Google’s income, accounting for 34%

(USD31,000,000,000 [01-2016]) of the company’s USD90,000,000,000 (02-2020) revenue in

2016 [5.2, 5.3]. Aside from its economic value, as a household name Android supplies Google

with reputational capital. ART is a core Android component that underpins the running of every

app installed on a given smartphone. It is consistently faster and more efficient than the previous

virtual machine, Dalvik, having been observed to perform a benchmark test over three times

faster than Dalvik, while using 20% less memory [5.4, para. 9].

Google stated that in response to University of Edinburgh (UoE) research they [text removed for

publication] [5.5]. They elaborate:

[text removed for publication]. [5.5, para. 2]

Crucially DexFuzz’s role has allowed Google to succeed in avoiding a poor outcome when

rolling out ART. While the benchmark tests (above) demonstrate ART is a superior virtual

machine, it would have had little value had apps created for Dalvik no longer been able to

function on Android phones after the upgrade, or had the transition created bugs. The forum

Android Central reports users experiencing bugs in pre-DexFuzz releases of ART, including in

WhatsApp and Spotify, as well as user anxiety about the transition [5.6]. Thanks to implementing

DexFuzz, disruption to Android users has been avoided.

https://doi.org/10.1109/CGO.2006.37
https://doi.org/10.1145/1242531.1242553
https://doi.org/10.1109/CGO.2009.21

Impact case study (REF3)

Page 4

Google have also made gains in productivity through the new tool, specifically through

DexFuzz’s ability to root out bugs at an early stage in the continuous ART development process,

before software is signed off for shipping. Although it is not possible to quantify the exact cost

savings, in 2014 Google released data on their generic bug-fixing costs, which was

subsequently quoted by software testing company VectorCAST in a white paper on bug-fixing.

“Bugs that resulted from incomplete testing had become one of the biggest barriers to Google’s

continued success”, the paper states [5.7, para. 2]. Approximately 40% of software engineers’

time was once dedicated to fixing bugs at Google, with the average cost of fixing a bug being

USD1,500 (10-2014) [5.7, para. 3]. Most significantly, the Google figures show that the cost of

fixing bugs becomes cheaper the earlier in the development process the bug is caught, varying

between USD5 (10-2014) (unit test) and USD5000 (10-2014) (system test) [5.7, table 3]. By

employing a tool that tests for bugs far in advance of software being finalised, resources are

saved either in engineer time, which can be re-routed to other activity, or in the cost savings of

employing fewer engineers. Google also note that the [text removed for publication]. [5.5, para.

2]

Google broadened the impact’s reach by making DexFuzz an official part of the Android Open

Source Project [5.8], [text removed for publication] [5.5, para. 2]. This means that any company

who wishes to design and create an Android smartphone receives free access to DexFuzz for

testing their design, and when Google wishes to perform changes or upgrades to Android

DexFuzz is routinely employed to test for bugs in the transition. Google confirm:

[text removed for publication]. [5.5, para. 2]

Through AOSP DexFuzz now underpins the development and innovation of a considerable

portion of the smartphone market. Google Android software powered 85% of smartphones in the

world in 2020 [5.9], which includes devices by global smartphone brands such as Samsung,

Motorola and LG. DexFuzz formed a crucial component in the transition to the smarter, faster

and equally robust Ahead-of-Time ART virtual machine, which in turn allows developers to put

their devices to more challenging and innovative uses.

5. Sources to corroborate the impact

5.1. Brandom, R. (2019, May 7). There are now 2.5 billion active Android devices. Retrieved

May 12, 2020, from https://www.theverge.com/2019/5/7/18528297/google-io-2019-
android-devices-play-store-total-number-statistic-keynote

5.2. Hall, G. (2016, January 22). Legal showdown between Google and Oracle reveals
astonishing value of the Android OS. Retrieved March 12, 2020, from
https://www.bizjournals.com/sanjose/news/2016/01/22/legal-showdown-between-google-
and-oracle-reveals.html

5.3. Clement, J. (2020, February 05). Google: Annual revenue. Retrieved July 15, 2020, from
https://www.statista.com/statistics/266206/googles-annual-global-revenue/

5.4. Snell, J. (2014, July 7). Android Runtime Performance Analysis: ART vs. Dalvik. Retrieved
May 11, 2020, from https://blog.newrelic.com/technology/android-art-vs-dalvik/

5.5. Letter of corroboration from Google ART TechLead and compiler engineer
5.6. Windows Central - Dynamic. (2013, December 14). Retrieved July 5, 2020, from

https://forums.androidcentral.com/google-nexus-5/343787-android-runtime-art.html
5.7. Vector Software. (2014, October 7). Quantifying The Cost of Fixing vs Preventing Bugs.

Retrieved March 12, 2020, from https://assets.markallengroup.com/article-
images/65147/Vector_PDF.pdf

5.8. Google Git. (2014, November 28). tools/dexfuzz - platform/art - Git at Google. Retrieved
October 21, 2020, from

https://www.theverge.com/2019/5/7/18528297/google-io-2019-android-devices-play-store-total-number-statistic-keynote
https://www.theverge.com/2019/5/7/18528297/google-io-2019-android-devices-play-store-total-number-statistic-keynote
https://www.bizjournals.com/sanjose/news/2016/01/22/legal-showdown-between-google-and-oracle-reveals.html
https://www.bizjournals.com/sanjose/news/2016/01/22/legal-showdown-between-google-and-oracle-reveals.html
https://www.statista.com/statistics/266206/googles-annual-global-revenue/
https://blog.newrelic.com/technology/android-art-vs-dalvik/
https://forums.androidcentral.com/google-nexus-5/343787-android-runtime-art.html
https://assets.markallengroup.com/article-images/65147/Vector_PDF.pdf
https://assets.markallengroup.com/article-images/65147/Vector_PDF.pdf

Impact case study (REF3)

Page 5

https://android.googlesource.com/platform/art/+/959ffdf65f280ee90b7944a8dd610564e7f9
9e69

5.9. International Data Corporation. (2020, September 14). Smartphone Market Share - OS.
Retrieved October 21, 2020, from https://www.idc.com/promo/smartphone-market-
share/os

https://android.googlesource.com/platform/art/+/959ffdf65f280ee90b7944a8dd610564e7f99e69
https://android.googlesource.com/platform/art/+/959ffdf65f280ee90b7944a8dd610564e7f99e69
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os

