202]

Impact case study (REF3)

Institution: University of Manchester

Unit of Assessment: 11 (Computer Science and Informatics)

Title of case study: Rule-based analysis for talking to spacecraft

Period when the underpinning research was undertaken: 2002 — 2013

Details of staff conducting the underpinning research from the submitting unit:

Name(s): Job title: Periods employed by HEI:
Howard Barringer Professor 1 Oct 1975 — 30 Sept 2011
David Rydeheard Senior Lecturer 1 Oct 1983 — 30 Sept 2018

Period when the claimed impact occurred: September 2013 — December 2020

Is this case study continued from a case study submitted in 2014? N

1. Summary of the impact

Spacecraft missions represent enormous investment (billions of dollars) for NASA. It is critical
to protect this investment by ensuring missions operate safely, and perform as expected.
Researchers at The University of Manchester developed novel fundamental methods in
runtime verification, that were implemented in two of NASA’s software tools - TraceContract
and LogFire - used to analyse commands (sent to spacecraft) and telemetry (received from
spacecraft). These tools (i) protect the multi-billion dollar investments of NASA, providing
automated methods to identify bugs in command sequences, and (ii) provide human
readable interpretation of sensor readings, enabling NASA engineers to continuously and
reliably monitor the health of the spacecraft. These tools were (and are) used on a daily
basis to guarantee safe operation in high profile NASA missions:

e LADEE lunar mission (Sept 2013 - April 2014: overall cost USD280,000,000),
e Curiosity Rover on Mars (Nov 2011 - present: overall cost USD2,500,000,000)

2. Underpinning research

Identifying a problem in theoretical computer science

In 2003, whilst on sabbatical from The University of Manchester (UoM) at The National
Aeronautics and Space Administration’s (NASA) Ames Research Centre, Barringer met
NASA scientist, Klaus Havelund, and was introduced to a problem in theoretical computer
science - how to define formal languages and algorithms that can express and efficiently
verify temporal properties of long sequences of structured records. This was known as the
“first-order trace-checking” problem - an exponential time complexity for certain types of
temporal properties, those with high data interdependencies. At the time no practical
algorithms existed.

Addressing the real-world challenge

NASA's interest in this problem developed from the fact that long command sequences are
transmitted to, and telemetry is received from, spacecraft on a daily basis. The temporal
properties NASA needs to check are in regard to safe operations, and by nature have high
data interdependencies, caused by the many interacting sensors and actuators on
spacecraft. This problem occurs both in live missions (e.g. Curiosity Rover currently on
Mars), and in ground simulations for future missions.

The challenge was therefore how to formally express complex properties that assure the
safety of spacecraft operation, and provide efficient automated checks of these properties.
This required fundamental developments in the field of runtime verification, addressing the
“first-order trace-checking” problem.

Page 1



202]

Impact case study (REF3)

Novel research:
From 2003 onwards, UoM researchers developed a series of novel specification formalisms
and monitoring algorithms to address this “first-order trace-checking” problem:

e Eagle [1] introduced a novel temporal finite trace-monitoring logic, which for the first
time enabled both recursive and parameterized expressions. This in turn enabled
specification and verification of requirements in a first-order fixed-point temporal logic.
However, a weakness was non-determinism of fixed-point operators (which caused
some operations to be computed in polynomial or exponential time).

e RuleR [2] addressed this weakness, developing a small-step trace-semantics, as
opposed to the big-step semantics present in Eagle. This enabled a non-backtracking
algorithm, applied and demonstrated for the first time in [3] within the target research
community of Aerospace Engineering.

e The QEA approach [4] developed a novel partial ordering data structure, which further
reduced the time complexity compared to [1] and [2] (this also won the international
Runtime Verification competition, 2014-15).

In parallel to the underpinning research [1 — 4], Barringer worked with NASA to implement
the algorithms as software [5] (see section 4). NASA and UoM continue a close working
relationship, with the UoM team's research being disseminated within NASA to support
development of additional software and runtime verification tools.

3. References to the research

The research was published in leading journals and conferences in the field (e.g. FM, RV,
and VMCAI, typically only 25% acceptance). The quality of the research in the target
community (Aerospace Engineering) is demonstrated by [3]. All citations are from Google
Scholar, October 2020.

[1] Barringer H., Goldberg A., Havelund K., Sen K. (2004) Rule-Based Runtime
Verification. In: Steffen B., Levi G. (eds) Verification, Model Checking, and Abstract
Interpretation. VMCAI 2004. Lecture Notes in Computer Science, 2937. Springer,
Berlin DOI/10.1007/978-3-540-24622-0_5 (445 citations)

[2] Barringer H., Rydeheard D.E., and Havelund K. (2010) Rule Systems for Run-time
Monitoring: from Eagle to RuleR. Journal of Logic and Computation, 20 (3), 675-706,
DOI: 10.1093/logcom/exn076 (179 citations)

[3] Barringer H, Groce A., Havelund K., and Smith M. (2010). Formal Analysis of Log
Files. Journal of Aerospace Computing, Information, and Communication, 7 (11): 365-
390. DOI:10.2514/1.49356 (102 citations)

[4] Barringer H., Falcone Y., Havelund K., Reger G., and Rydeheard D., (2012)
Quantified Event Automata: Towards Expressive and Efficient Runtime Monitors. In:
Giannakopoulou D., Méry D. (eds) FM 2012: Formal Methods. FM 2012. Lecture
Notes in Computer Science, 7436. Springer, Berlin,

DOI: 10.1007/978-3-642-32759-9 9 (142 citations)

[5] Barringer H., and Havelund K. (2011) TraceContract: A Scala DSL for Trace Analysis.
In: Butler M., Schulte W. (eds) FM 2011: Formal Methods. FM 2011. Lecture Notes in
Computer Science, 6664. Springer, Berlin. DOI: 10.1007/978-3-642-21437-0_7 (105
citations)

Page 2


https://doi.org/10.1007/978-3-540-24622-0_5
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1093%2Flogcom%2Fexn076
https://doi.org/10.2514/1.49356
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-642-21437-0_7

Impact case study (REF3) 202]
4. Details of the impact

Context

NASA is an independent agency of the U.S. Federal Government. One of NASA’s primary
activities is the launch and monitoring of spacecraft around the solar system. These
spacecraft are typically multi-billion dollar investments by the U.S. Government, and thus
require an exceptionally high degree of safety within NASA’s daily operations in order to
protect that investment.

NASA spacecraft receive command sequences sent from NASA ground stations for their
control, and transmit telemetry (sensor signals) back to NASA, giving indications of their
surroundings. This requires constant work to ensure command sequencing is free of defects
to avoid damage to the spacecraft, and that data can be continuously and reliably used by
NASA engineers. This checking uses methodologies from the field of “runtime verification”.
Prior to this research, common practice for this checking at NASA’s Jet Propulsion
Laboratory (JPL), was to develop ad-hoc tools using various scripting languages, resulting in
a growing collection of scripts [A]. These were hard to maintain and modify, as well as having
many points of potential failure. This became a concern for long-running missions over many
years.

Pathway to impact

In 2003, Barringer took a sabbatical at the NASA Ames Research Centre in California. This
visit established a relationship between UoM and NASA, and enabled a programme of
industry-led research problems to be discussed, developed, and addressed. Barringer
worked with NASA to implement the initial research [1,2,3] as software, resulting in
TraceContract (see below) [5]. Subsequent research at UoM [4] generated novel and efficient
data structures which informed further software by NASA, resulting in LogFire (below) [B].

Telemetry
{processed by LogFire)

Commands
(checked by TraceContract)

TraceContract is a domain-specific programming language (DSL) suitable for runtime
verification, implemented by Barringer and NASA [5]. The DSL is implemented in Scala, but
incorporates the core RuleR language [2] with temporal operators. This was used to create
“Flight Rule Checkers”, ensuring safe operations for the transmitted command sequences,
and has been deployed in NASA missions since 2013.

LogFire is a software tool implemented by NASA, which relies fundamentally on the rule-
based approach introduced by RuleR [2] and enables engineers to generate abstract
(human-readable) events from the (non-human readable) events in log files coming from
spacecraft telemetry. This allows them to assess spacecraft health and operational status.
The tool remains in use within NASA, and as confirmed in September 2020 by a senior
scientist within the Jet Propulsion Laboratory (JPL) at NASA “With its demonstrated
effectiveness, this tool [Logfire] has been incorporated as a standard feature for future
ground systems and will have lasting benefits to JPL operations.” [A, C].

Page 3



Impact case study (REF3) 202]
Reach and significance of impact
In 2014, NASA had a cumulative annual budget of USD17,646,000,000, increasing to
USD22,689,000,000 in 2020 [D] and therefore this research is having impact in a multi-billion
dollar organisation.

Senior NASA Scientist, Klaus Havelund, confirms that “the research of Barringer et al. has
deeply influenced the development of a new generation of runtime verification technology,
used in real NASA missions [...] The TraceContract and Logfire tools have been an asset to
our activities, and have possibly made certain mission-critical operations easier to perform
than they would have been without the tools” [A]. Specific examples of missions that have
used TraceContract and LogFire within this REF period are:

The LADEE mission

The Lunar Atmosphere and Dust Environment Explorer (LADEE) was a robotic mission
that orbited the moon to gather detailed information about the structure and composition of
the thin lunar atmosphere, and determine whether dust is lofted into the lunar sky. LADEE
launched on 7 September 2013, and lasted seven months, ending on 18 April 2014, at a
cost of USD280,000,000 [A].

The TraceContract tool was used on a daily basis throughout the 7-month mission to
ensure that command sequences sent to the LADEE spacecraft satisfied pre-defined flight
rules, designed to ensure safe operation [A][E]. TraceContract provided automated checks
of the daily command sequences before they were uploaded, providing assurance to the
ground staff. Throughout the 7-month mission, the tool processed over 250 command
sequences, and identified safety issues in roughly half of these. The NASA engineer
responsible for command sequencing and verification, when asked how often errors were
found, responded [E]:

“I would actually say it was often, perhaps every other command sequencing cycle.”

The Curiosity Rover mission

The Curiosity Rover mission to Mars is one of NASA’s most high-profile recent missions,
costing USD2,500,000,000 [A]. Since 2014, the LogFire tool has been used on a daily
basis to analyse telemetry received from the Curiosity Rover [F]. These telemetry streams
can contain millions of events [G] and can therefore be difficult to comprehend by humans,
as well as interpret against the higher-level execution plans submitted to the spacecraft.

The output of LogFire feeds into visualisation software used to monitor the health of the
rover. This is used in ground modelling and simulation work, providing essential
information for NASA engineers on a daily basis. NASA Engineer Klaus Havelund has
confirmed [A] that:

“The Curiosity Rover remains on Mars to this day, and thus the research of Barringer et
al. continues to have a significant impact on NASA’s activities.”

In summary, the software developed from the UoM research, has mitigated against losses
(both monetary and public image) through improved methods in safety and security critical
situations.

5. Sources to corroborate the impact

[A] Letter of Support from Klaus Havelund, Senior Research Scientist, NASA Jet
Propulsion Laboratory, (21 November 2020)

[B] NASA Tech Briefing (August 2012) - Internal NASA tech report on LogFire, citing the
collaboration of Havelund and Barringer.
Available at https://ntrs.nasa.gov/citations/20120013237 - pdf on file

Page 4


https://ntrs.nasa.gov/citations/20120013237

Impact case study (REF3) 202]

[C] NASA web page “Avionics and Flight Software” - Cached website dated 8 Sept 2020
saved as pdf [Accessed 14th October 2020]

[D] NASA Summary budget reports:
[D (i)] 2014 Summary budget report
[D (ii)] 2020 Summary budget report

[E] Kurklu, E., and Havelund, K (2020) A Flight Rule Checker for the LADEE Lunar
Spacecraft, Keynote Talk at the 17th International Colloquium on Theoretical Aspects
of Computing (ICTAC 2020)., China 30 October 2020 - 4 December 2020, Available
at https://www.havelund.com/Publications/frc-ladee-ictac-2020.pdf - pdf on file

[F] Publication confirming LogFIRE is used within the Curiosity Rover mission: Havelund
K., and Joshi R. (2015) Experience with Rule-Based Analysis of Spacecraft Logs. In:
Artho C., Olveczky P. (eds) Formal Techniques for Safety-Critical Systems. FTSCS
2014. Communications in Computer and Information Science, vol 476. Springer,
Cham. DOI:10.1007/978-3-319-17581-2_1

[G] Kauffman, S., Havelund, K., Joshi, R. and Fischmeister, S., (2018) Inferring event
stream abstractions. Formal Methods in System Design, 53, 54—82,
DOI:10.1007/s10703-018-0317-z

Page 5


https://www.havelund.com/Publications/frc-ladee-ictac-2020.pdf
https://doi.org/10.1007/978-3-319-17581-2_1
https://doi.org/10.1007/s10703-018-0317-z

